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unacceptable interatomic distances, fits naturally the 
space groups P-62c and P63/mmc already discussed. 
It makes the space group P63mc rather unlikely though 
not impossible. 

The modulation in this case thus could well be a 
long-range order in the orientations of the MoO4 tetra- 
hedra oriented approximately with their peaks upward 
over one half of the modulation period and downward 
over the other half of the period. Above the transition 
point at 440°C, the tetrahedra will presumably be dis- 
tributed at random among the possible orientations. 

It seems possible that this distribution stems to some 
extent from rotational freedom of the anion (see also 
Bredig, 1943). However, this cannot be decided from 
our data. 

The model proposed here agrees well with predic- 
tions of Fischmeister (1962) based on steric calculations 
carried out for the high temperature modifications of 
a series of sulphates. The structure of these sulphates 
also belongs to the basic structure type. Using steric 
as well as thermodynamic evidence, Fischmeister pro- 
posed three possible structure types: 

(i) two possible orientations of the anion tetrahedra, 
pointing either upward or downward along the c direc- 
tion, are randomly distributed among the anion posi- 
tions, 

(ii) domains are present in which the orientation of 
all tetrahedra is the same, 

(iii) a superstructure is present. 
In all of these cases at least two anions with weight 

½ must be superposed in order to get the average struc- 
ture. Our model of the modulated structure can be de- 
scribed as a special case of (ii) or a generalization of 
(iii). 

Since the average modulated structure has been 

shown to be essentially identical to the hexagonal high 
temperature form, the latter is not likely to possess 
Eysel's high K2SO 4 structure either. We believe that it 
represents Fischmeister's type (i). 

KzWO 4, Rb/WO4 
The above interpretation applies equally well to 

these compounds. In the case of K2WO 4 a superstruc- 
ture with K=¼ seems to be possible. Some reflexions 
with l=4 ,  which were absent in K2MoO 4 are present 
here with very weak intensities. 

We thank Professor P. M. de Wolff for his valuable 
advice and criticism, Mr G. M. Fraase Storm for his 
skillful technical assistance and Dr A. S. Koster for 
putting the diffraction patterns of Rb2WO4 and K2WO4 
at our disposal. 
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The weights to be assigned in least-squares refinements of crystal structures are discussed in terms of a 
weighted difference synthesis in which electron density differences close to atomic centres are regarded 
as more important than those in other regions. Least-squares refinement with suitably modified weights 
is shown to produce more acceptable atomic parameters in certain cases than those obtained with 
experimental weights. 

Relation between least-squares refinement 
and difference synthesis 

Suppose that we wish to refine the parameters describ- 
ing a crystal structure by the method of least squares 

and that we have at our disposal a set of experimental 
Fo values of uniform quality and free from systematic 
error. It is easily shown that minimization of 

Q= ~ w(h)[Fo(h ) - rc(h)] 2 (1) 
h 
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with unit weights [w(h)= 1] is equivalent to minimizing 
the integral of the difference density squared over the 
unit-cell volume. From the relationship between the 
electron density distribution 0(x) and its Fourier coef- 
ficients F(h) we have 

[Fo(h)- F~(h)] exp ( -  2rcih. x) 
h 

=Oo(X)-~,.(x)=a(x) 
[Fo(h)- Fc(h)] z cos (2zrh. u)= D(u) 

h = I d(x)a(x-  u)dx 

~. [Fo(h)- F~(h)] 2= D(0)= I 32(x) dx .  (2) 
T d 

Weighted difference synthesis 

In minimizing the integral on the right hand side of (2), 
differences between 0o(X) and 0¢(x) at all positions x 
throughout the unit cell have equal weight. In certain 
circumstances, however, we may choose to regard 
some regions of Qo(X) and &(x) as more relevant than 
others to the problem under consideration. For exam- 
ple, we may be more interested in fitting the distribu- 
tions close to the atomic centres than in fitting the outer 
regions. This would be the case if we want atomic 
positions that correspond to positions of maximum 
electron density rather than to centroids of asym- 
metric density distributions, or if we want vibrational 
parameters that are as far as possible free from the 
disturbing effects of valency electrons. We may then 
wish to introduce an appropriate function that assigns 
high weight to difference density close to atomic 
centres, low weight to difference density that we regard 
as irrelevant for our purposes. 

If &(x) and Oc(x) are taken as sums of atomic 
distributions, i.e. 

= 

] 
the quantity to be minimized is then 

D'(O)= ~ f d~(x -x , ) exp  [ - 2 q ( x -  x,) 2] (3) 

where the weighting function is conveniently taken as 
Gaussian. This is equivalent to multiplying the peaks 
of &(x) and Oc(x) by Gaussian functions exp [ - q ( x -  
x j)] 2 with appropriate modification of their Fourier 
coefficients. 

Modified least-squares refinement 

Suppose that the 'natural '  atomic peaks are also 
roughly Gaussian in shape: 

~Ooj(X --  X j )  ~ ~Ocj(X --  X j )  ~'¢ A exp [ - p ( x  - xj)2]. 

The form factor (including isotropic temperature fac- 
tor) of the scattering centres is then proportional to 

-- 7r2h 2 
f(h)=A(~la/2exp[ p - - ]  

\P/ 

using a standard definite integral (Dwight, 1957, 
formula 863.3) where h =2  sin 0/2. 

The weighted atomic peaks are then 

O'oj(X- x j )~  O~(x- x j )~  A exp [ - ( p  + q) ( x -  xj) 2] 

corresponding to modified form factors 

( f ' (h)  = A \-p-74_q ! e x p [  p+q] .  

Thus, to the extent that all atoms can be assumed to 
have similar form factors, the ratio of modified to un- 
modified Fourier coefficients is 

F'(h) f ' (h)  = ( p t a/2 [ rc'h2q 
i f (h ) -=  f(h) \ p 4 - q !  exp [p(pTrq) ] . 

In order to achieve minimization of (3) the experimental 
weights in the corresponding least-squares analysis 
have to be multiplied by a function that depends on 
the desired degree of sharpening, and the expression 
to be minimized is then not (1) but 

Q'= ~ w'(h)[Fo(h)- Fc(h)] 2 (4) 
h 

where 

with 
w'(h)= w(h) exp [r sin 2 0/). 2] 

87z2q 
r ~ -  . . . . . . .  p(p+q) • 

The maximum permissible value of r, corresponding to 
a d function for 0 ' ( x - x  j), is 87:/p. 

Choice of modified 'weights' 

The approximation of treating atomic peaks as sym- 
metrical Gaussian functions holds reasonably well, 
and typical values ofp  for second-row atoms are in the 
range 3-4 A. -2 (Stout & Jensen, 1968), or even smaller 
if thermal motion is large. The value of q is chosen to 
give the desired degree of sharpening. With q = 9 A -2, 
d2(x) is reduced to 5 % of its value at radial distance 
0.41 A from the atomic centre. With p= 3 A -2 ,  q= 
9,~-2 we obtain r,,~20A 2. Alternatively, we could 
derive a reasonable value of r, and hence of q, from the 
overall form factor combined with the overall isotropic 
temperature factor. In light-atom structures f j  exp 
[-Bsin20/22] is approximately reproduced by a 
Gaussian function zj exp [ - B '  sin 2 0/22], correspond- 
ing to an average atom with density fall-off given by 
exp [ - p x  2] where p = 4rc2/B '. Note that if p = q then 

87r2q 4 g  2 
- -  _ a  t r= p(p2kq) p 

showing that the weighted least-squares expression 
1 

J'(h)- [Fo(h)- Fc(h)] 2 discussed by Cochran (1948) cor- 

responds to minimization of D'(0) (equation 3) with 
atomic peaks exactly twice as sharp as those of the 
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natural electron density distribution. We see that, 
depending on how much weight we assign to the outer 
regions of the atomic peaks, we may choose a somewhat 
larger or smaller value of q. Thus the modified weights 
in the corresponding least-squares analysis depend not 
only on the experimental weights but also on which 
features of  the electron density are regarded as of most 
importance for the atomic parameters in question. 

High-order refinement 

Least-squares refinements based only on high-order 
reflexions have been reported in some cases (e.g Stew- 
art & Jensen, 1969; O'Connell, 1969; Collins & Hoard, 
1970) to yield atomic coordinates that are closer to the 
true atomic positions (i.e. as determined by neutron 
diffraction) than those derived from refinements in- 
cluding all observed reflexions. High-order refinements 
have also been reported to give improved values of 
thermal parameters (Coppens & Vos, 1971). We can 
expect to find differences between the lesults of least- 
squares refinements with different weighting systems if 
the electron density peaks are not centrosymmetric, 
as could arise from asymmetric charge distributions or 
from anharmonic vibrations of  the atoms. The effects 
of  such asymmetry have been discussed by Dawson 
(1964), who showed that the use of sphericalffunctions 
in unit-weight least-squares analysis can lead to 
spurious shifts in atomic positions of  circa 0.02 ,~ and 
to apparent anisotropy in thermal parameters. 

High-order refinements are implicitly based on dis- 
continous weighting systems, with a sudden change 
from zero to unit (or experimental) weights at some 
arbitrary radius in reciprocal space. The corresponding 
peak-weighting functions obtained by Fourier trans- 
formation of discontinous step functions are not as 
smooth nor as readily interpretable as Gaussian func- 
tions. In addition to a sharp, central peak, they contain 
high-frequency ripples of considerable amplitude, 
which may give relatively high weight to features of  the 
difference density at some distance from the atomic 
centres. We believe that the modified least-squares 
refinement based on expression (4) is, in general, to be 
preferred to high-order refinement. 

Experience with modified weights 

We have carried out a number of least-squares refine- 
ments with various weighting schemes (unit, experi- 
mental, modified) for three crystal structures. 
(a) 1,4,7,10,13,16-Hexaoxacyclooctadecane, CIzH240 6 

(a = 8.295, b = 20.230, c = 8-490 A, Pbca, Z = 4). 
(b) Potassium thiocyanate complex, CxzHz406.KNCS 

( a =  8.190, b =  14.285, c=7.775 A., fl=99.19 °, P2Jc, 
z=2). 

(e) Sodium thiocyanate complex, CtzHz406.NaNCS 
( a =  12.316, b = 13.737, c =  11.215 A., f l= 105.32 °, 
P2t/c, Z = 4 ) .  

Full details of these structures will be given else- 

Table 1. Analysis of results of least-squares analysis 
with experimental and modified weighting systems for 

for crystal structures (a) (b) (c) 

For numbering system see Fig. 1. 

Uncomplexed ligand (a) 
Experimental 

Bond weights 
C(2)-C(3) 1.496 (2) ,~, 
C(5)-C(6) 1-489 (2) 
C(8)-C(9) 1-491 (2) 
C(2)-O(1) 1-420 (2) 
C(3)-O(4) 1-424 (2) 
C(5)-O(4) 1 "415 (2) 
C(6)-O(7) 1 "410 (2) 
C(8)-0(7) 1.417 (2) 
C(9)-O(1)" 1-429 ~) 
(d(C-C)) 1.492 
(d(C-O)) 1.419 
R (%) 4.01 
Ru (%) 4.18 
((U?j-- U/C/)2) 1/2 0.00444 A 2 
sin 0/2 range 0-0.704 A- 

Modified weights 
r = 20/~2 r = 36/~2 
1"505 (3) A 1-506 (2) /~ 
1"504 (2) 1.509 (2) 
1"504 (2) 1"505 (2) 
1.416 (2) 1.414 (2) 
1 "412 (2) 1 "408 (2) 
1.408 (2) 1-403 (2) 
1.407 (2) 1.405 (2) 
1.411 (2) 1.407 (2) 
1.426 ~) 1.426 ~) 
1 '504 1"507 
1"413 1"411 
4"67 5"22 
3"40 2"23 
0.00424 ~ 0.00444/~ 2 

Potassium complex (b) 
Experimental 

Bond weights r = 14 A 2 r = 36 A z 
C(2)-C(3) 1"489 (2) A 1.497 (3)/~ 1"493 (3) .~ 
C(5)-C(6) 1"495 (3) 1-507 (4) 1"509 (5) 
C(8)-C(9) 1"493 (2) 1-507 (3) 1-508 (3) 
C(2)-O(1) 1.411 (2) 1.418 (2) 1.420 (3) 
C(3)-O(4) 1-415 (2) 1.414 (2) 1.410 (3) 
C(5)-O(4) 1.421 (2) 1-418 (3) 1.413 (3) 
C(6)-O(7) 1.414 (2) 1-418 (2) 1.423 (2) 
C(8)-O(7) 1"419 (2) 1-417 (2) 1.415 (3) 
C(9)-O(1)' 1"425 ~) 1"424 (2) 1"425 ~)  
(d(C-C)) 1"492 1"504/~ 1-503 
(d(C-O)) 1"418 1"418 1"418 
R (%) 3"46 4"21 4"55 
RH (%) 4"69 5"79 5"85 
( (U~-  Uh)') 1/2 0.00402 ,~2 0.00398 ,~2 0.00418/~? 
sin 0/2 range 0-0.682 A-1 

Sodium complex (c) 
Experimental 

Bond weights 
C(2)--C(3) 1.487 (3) A 
C(5)--C(6) 1.492 (4) 
C(8)--C(9) 1.489 (3) 
C(1 l)-C(12) 1.485 (4) 
C(14)-C(15) 1.472 (5) 
C(17)-C(18) 1.504 (4) 
C(2)--O(1) 1-422 (3) 
C(3)--O(4) 1"416 (3) 
C(5)--O(4) 1.425 (3) 
C(6)--O(7) 1.419 (3) 
C(8)--O(7) 1-420 (3) 
C(9)--O(10) 1.434 (3) 
C(11)-O(10) 1-424 (3) 
C(12)-O(13) 1.421 (4) 
C(14)-O(13) 1.408 (4) 
C(15)-O(16) 1.438 (4) 
C(17)-O(16) 1.428 (4) 
C(18)-O(1) 1.427 ~) 
(d(C-C)) 1"488 
(d(C-O)) 1.424 
R(%) 5.18 
RH (%) 8"17 
((UOj_ vlJ]ll¢~2\l[2/ 0"00711 A s 
sin 0/2 range 0-0"617 A -t 

Modified weights 
r=18/~ 2 r=36/~ z 
1.496 (2)/~ 1.497 (2) /~ 
1"495 (2) 1.497 (2) 
1.509 (2) 1-509 (2) 
1.491 (3) 1.491 (3) 
1.510 (3) 1.511 (3) 
1.507 (2) 1.510 (2) 
1.420 (2) 1.421 (1) 
1.412 (2) 1.413 (2) 
1.425 (2) 1.425 (2) 
1-423 (1) 1.423 (1) 
1.411 (2) 1.410 (2) 
1"424 (2) 1.423 (2) 
1.424 (2) 1.426 (2) 
1.437 (3) 1-437 (2) 
1.415 (3) 1.418 (2) 
1.430 (3) 1.432 (2) 
1.428 (3) 1.426 (3) 
1.421 ~) 1.419 ~) 
1.501 1.503 
1-423 1.423 
6.80 8.10 
6-09 5.28 
0.00603 A 2 0"00627/~? 
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where (Seiler, Phizackerley, Dobler & Dunitz, 1972, 
unpublished), and we merely note here that intensity 
data for all three crystals were measured with a four- 
circle diffractometer (Hilger & Watts Y290) under 
similar conditions (graphite monochromated Mo K~ 
radiation, 0/20 scan with background measured for 
each reflexion separately). Experimental weights were 
assigned in accordance with our usual laboratory 
practice, in which allowance is made for various kinds 
of experimental error. 

The least-squares refinements, some results of which 
are summarized in Table 1, were based on structure 
models containing all atoms including hydrogens 
(positions of H atoms calculated from stereochemical 
considerations and held constant during individual re- 
finement cycles). In structure (b) tile thiocyanate group 
is disordered, occupying two antiparallel orientations at 
random, and the parameters describing this group were 
held constant in the modified least-squares refinements, 
which are not appropriate for treating disordered 
groups of atoms. 

Since it is almost impossible to draw any conclusions 
directly from the positional parameters obtained by 
the various least-squares refinements, we base our dis- 
cussion mainly on the C-C and C-O bond distances 
calculated from these parameters. It should be kept 
in mind that the true internuclear distances in these 
structures are not known. As expectation values for 
the uncomplexed hexa-ether we may adopt the values 
d(C-C) = 1-523 A and d(C-O)= 1.423 A found in 1,4- 
dioxane by gas-phase electron diffraction (Davis & 
Hassel, 1963). These distances may be somewhat dif- 
ferent in the alkali cation complexes, and slight dif- 
ferences, of the order of 0.01 A, perhaps, can also be 
anticipated between chemically equivalent but crystal- 
lographically non-equivalent bonds. Moreover, the 
thermal vibration parameters for all three crystal struc- 
tures are quite large and sometimes highly anisotropic. 
Analyses of these parameters in terms of rigid-body 
libration and translation (Schomaker & Trueblood, 
1968) leads to only modest agreement between ob- 
served and calculated U~j values for crystals (a) and (b) 
and to poor agreement for the Na complex (c) (see 
Table 1). In all three cases, and especially in (c), the 
observed bond distances are slightly shortened as 
a result of rigid-body and intramolecular motions. 
Nevertheless, in spite of these uncertainties and gaps 
in our knowledge, a comparison of the results of the 
different least-squares refinements leads to some inter- 
esting conclusions. 

For the uncomplexed hexa-ether, refinement with 
experimental weights [Table l(a) column 2] leads to 
C-C distances of 1.489-1.496 A, mean 1.492 A, and to 
C-O distances 1.410-1.429 A, mean 1.419 A. Very 
similar results are obtained with unit weights. When 
the experimental weights are multiplied by a modifica- 
tion function as in (4) with r = 2 0 A  z, [Table l(a), 
column 3] the C-C distances increase to a uniform 
value of 1.504 A, while the (2-0 distances decrease 

slightly to 1.407-1.426 A, mean 1.413 A. Increasing r 
to 36 ]k 2 [Table l(a), column 4] leads to further small 
changes in the parameters, generally in the same sense 
as before. The thermal motion corrections to be applied 
here are of uncertain magnitude but they should 
lengthen C-C and C-O distances by roughly equal 
amounts. The difference (d(C-C))  - (d(C-O))  is 0.073 .A. 
with experimental weights, and 0.091-0.096 A with 
modified weights. As discussed previously, the expected 
difference, by analogy with 1,4-dioxane, is 0.100A. 
The least-squares analysis with experimental (or unit) 
weights thus appears to lead to C-C distances that are 
too short and to C-O distances that are slightly too 
long, presumably because of bonding density effects, 
These systematic errors can apparently be reduced, to 
what extent we do not know, by using a suitably 
modified weighting system. It is worth noting that 
recent X-ray and neutron diffraction analyses of D- 
glucitol (Park, Jeffrey & Hamilton, 1971) give(d(C-C))x 
= 1.520 ./t, (d(C-C))N = 1.525 ~,  (d(C-O))x = 1.427 )~, 
(d(C-O))N= 1"422 A, thus illustrating the same kind 
of systematic error. 

Similar trends are also seen in the results obtained 
with the NaNCS and KNCS complexes. In both cases 
(d(C-C))  increases from about 1.490 ~ with experi- 
mental (or unit) weights to greater than 1.50 A with 
modified weights; (d(C-O))  remains almost constant 
at about 1.423-1.424 A for the Na complex and 1-417- 
1.418 A for the K complex. 

Table 1 also suggests that the vibration parameters 
U~j obtained with experimental weights can be slightly 
improved by introducing a modified weighting system. 
As a criterion we use here the quantity ((Ufj- UCj)2) 1/2 
averaged over all vibration tensor components and 
over all atoms. This quantity is a measure of the good- 

C5 C6 

Ca C8 

04 0 7  

C2 C9 

01 

Cm Cll  

% - . . /  

015 014 

Fig. 1. Numbering system for 1,4,7,10,13,16-hexa-oxacyclo- 
octadecane (see Table 1). 
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ness-of-fit obtainable by adjusting translational and 
librational motions of a rigid body to the observed 
parameters. The improvement is most obvious for the 
Na complex. 

There are two other advantages to be gained by using 
suitably modified instead of experimental weights in 
least-squares analysis. One is in faster convergence 
(provided the starting parameters are not too far from 
the final ones); the other is that, because of'sharpening' 
of the atomic peaks, cross-terms between different 
atoms in the normal-equations matrix are reduced so 
much that 'block-diagonal' refinement converges 
rapidly to yield parameters almost identical to those 
obtained by full-matrix refinement. This represents a 
considerable saving in computation time. 

One might expect that introduction of too extreme 
a modification function should lead to wildly erratic 
parameter shifts. Table 1 shows that the parameters 
hardly change at all on increasing the exponent r from 
15-20 to 36 A 2. With the larger value of r the ratio of 
modified to experimental weights is about 107 for high- 
order reflexions (sin 0/2 ~ 0.7 A-1). A simple, practical 
method to ensure that the modified weighting function 
w'=w exp (r sin 2 0/2 2) is not too extreme is to plot 
values of (w'(AF) 2) in different sin 0/2 ranges. One 
criterion for an appropriate weighting system is that 
there should be no pronounced variation of (w'(AF) 2) 
with sin 0/2. We find that with our 'experimental' 
weights (r=0)~w(AF2)) typically decreases somewhat 
with increasing sin 0/2. For the Na complex (Table 2) 
the average at high sin 0/2 is about 10 % of the average 
at low sin 0/2. When exponentially modified weighting 
systems are introduced the ratio (w'AZ)/(wA 2) increases 
with increasing sin 0/2 but, up to a certain limiting r 
value, the increase in this ratio is far less than the in- 
crease in the ratio of the weights, (w')/(w). This 
limiting value of r is about 18 A 2 for the Na complex 
(Table 2) and somewhat different for the other two 
structures. At these limiting r values the plots of (w'A 2) 
against sin 0/2 are reasonably fiat. Further increase in 
r (up to 36 A 2) brings a rapidly steeper increase in the 

ratio (w'A2)/(wA2), but the atomic positional param- 
eters suffer only very small changes in this range (see 
Table 1). The thermal parameters do change (up to ca. 
10 %) and, judging from the goodness-of-fit attainable 
by the rigid-body treatment, the changes are for the 
worse. Within limits, the harm done by introducing a 
too steeply rising exponential modification function 
does not appear to be excessive. 

Comparison with neutron diffraction results 

A more objective criterion for the improvement attain- 
able by introducing exponentially modified weights into 
the least-squares analysis can be based on a comparison 
between results of X-ray and neutron diffraction. 
Whereas the atomic positions obtained by conventional 
least-squares analysis of X-ray data correspond to 
centroids of electron density distributions, those ob- 
tained with suitably modified weights should corre- 
spond more to centres of core electron distributions 
and hence should be in better agreement with nuclear 
positions as determined by neutron diffraction. 

We have carried out some comparisons with data 
for trans-cyclodecane-l,6-diol, the crystal structure of 
which has been determined by X-ray followed by 
neutron diffraction (Ermer & Dunitz, 1971). The 
original X-ray analysis was carried out merely to 
provide a convenient starting point for the neutron 
analysis and no special precautions were taken to 
obtain highly accurate intensity data. Apart from 
hydrogen atoms (whose positions were estimated in the 
X-ray work from stereochemical considerations and 
held constant during the least-squares refinements dis- 
cussed here), the asymmetric unit comprises 10 carbon 
and 2 oxygen atoms, for which the positional and 
vibration parameters were allowed to vary. With 
'experimental weights' the quantity Q = ((x~-x~:)2) l/z 
was 0.023 ~,  maximum deviation [x~-x~:[ being 
0.045 A,. With exponentially modified weights (r= 
11 A2), Q was 0.017 A., maximum deviation 0.023 ~ ,  
a considerable improvement. The quantities Q'= 

(sin 012) 
r = 0  

(w) 
(wa 2) 

r=18 A z 

(w') 
(w'A~) 

r= 36 A s 

(w') 
(w'~ ~) 

No. of 
reflexions 

Table 2. Dependence of (A 2) (w') and (w'A 2) on sin O/2 for three refinements with exponentially 
modified weighting systems (r = 0, 18, 36 A 2) 

Data from analysis of sodium complex (c). 
0.21 0-32 0.38 0.43 0-47 0.51 0.54 0-57 0"60 

3.56 1"14 0"53 0.43 0.40 0.31 0-27 0-24 0"27 
9-22 11"7 13-8 13"1 14"4 15"3 14"6 13"9 13"0 
30-5 10"1 6"25 4"53 5"32 4"93 3"87 3"31 3"42 

16"5 4"28 1"19 0"43 0"38 0.20 0"14 0"12 0"10 
2.07 x 10 6"96 × 10 1-74 × 102 3"30 × 102 6"98 x 102 1.41 × 103 2.55 × 103 4"61 x 103 7"76 x 103 
1"51 x 102 1"62 x 102 1-73 × 102 1"34 x 102 2.42 × 102 2"88 × 102 3"39 x 102 4"93 × 102 6"61 × 102 

26"1 6"09 1"59 0"61 0"54 0"30 0"19 0"14 0-11 
5"71 x 10 4 .84x  10 z 2.51×103 9 .39x  103 3.81 x 10 a 1.48x 10 s 5.03 x 10 s 1.73 x 106 5.22×106 
4"8 x l 0 2  1.41x 103 3-17x 103 5.14×103 1.75 x 104 4.34×104 8.72×104 2.20×105 4.76 × 10 s 

334 324 329 343 362 374 372 360 373 
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( (d~-d~)~)  m expressed in terms of the agreement in 
corresponding bond distances are 0.013 A for 'experi- 
mental' weights and 0.007 A for modified weights. 
The estimated standard deviations in x} ~ are about 

x about 0.006 A. 0.003-4 A and in xj 

Standard deviations 

Sharpening the atomic peaks by applying a modifica- 
tion function is a poor substitute fDr sharpening via an 
appropriate experiment e.g. neutron diffraction or 
X-ray diffraction at low temperature, because the 
observational errors unavoidably present in the high- 
order ~eflexions increase in importance with the in- 
creased weight assigned to these reflexions. In the cal- 
culations described in this paper, the standard devia- 
tions of the atomic parameters have been estimated in 
the usual way i.e. by inversion of the least-squares 
normal equations, assuming the relative weights to be 
given by w'(h) instead of w(h) (equation 4). Certain 
rather obvious objections could be raised against this 
procedure and the standard deviations calculated by 
it are doubtless somewhat underestimated. A more 
detailed discussion of the problems concerning the 
'weights' and estimates of standard deviation in least- 
squares analysis of X-ray diffraction data will be given 
elsewhere (Bfirgi, 1972). 

Conclusions 

In X-ray analysis, as in many other fields of investiga- 
tion, one can never get something for nothing. The 
improvement in the determination of atomic peak 
positions is paid for by sacrificing information about 
the electron density distribution in regions further from 
the atomic centres. The loss here is not a serious one, 
since this information is usually ignored anyway in 
routine least-squares analysis based on standard 
spherical form factors and, in any case, it can always 
be recovered later by difference synthesis. In fact, for 
atoms with asymmetric density distributions, it is just 
these outer regions that cause the apparent atomic 
centres, as determined by least-squares analysis, to 
drift away from the electron density maxima when low- 
order reflexions are included in the analysis with large 
weight. The improvement in the shapes of the vibra- 
tional tensors has to be offset against lower precisicn 
in the overall temperature and scale factors. Since these 
factors depend on the general fall-off of F z with in- 
creasing scattering angle, any down-weighting of low- 
order reflexions leads to increased uncertainty about 
the behaviour at low sin 0/2. Again the loss is not 
serious since the overall temperature factor is not 
usually a quantity to which much physical significance 
can be ascribed. It is more often a kind of repository 
for collecting various kinds of systematic errors in the 
observations and imperfections in the model. 

We have been assuming so far that the weights to be 
applied in expression (1) have been determined from 
an analysis of the experiment, and that we place more 

confidence in these weights than in the model used to 
obtain Fc(h). We have shown that altering certain 
features of the model, e.g. peak shapes, has the effect 
of modifying the weights. The altered model really 
corresponds to a different experiment, one that we 
have not actually carried out, but one whose results 
can be inferred, in principle, by mathematical opera- 
tions on the actual experimental data. 

The opposite extreme point of view is to place no 
confidence whatsoever in the experimental weights, 
but to assign weights solely on the basis of the trends 
in [AF(h)] 2. A weighting function is cho:~en so that 
(w(AF) 2) is roughly constant for arbitrary subsets of 
the data. As discussed by Cruickshank (1970), weights 
chosen in this way lead to estimates of precision for the 
model parameters that 'allow for all random experi- 
mental errors, for such systematic experimental errors 
as cannot be paralleled in the calculated model, and for 
such defects of the model as are not paralleled in the 
experimental data'. The main weakness of this extreme 
point of view is that although the model has been 
tampered with, one does not know in what way and to 
what extent. 

The concept of a modified weighting system does not 
eliminate this difficulty but it provides some insight 
into the interplay of certain kinds of systematic experi- 
mental error and certain defects in the model. For 
example, the distribution of (w(AF)2> shown in Table 
2 could be ascribed to systematic errors in the experi- 
ment that affect low-order reflexions more severely 
than high-order ones, or to defects in the model, or 
possibly to both. Whatever the underlying cause, a 
possible response is to introduce a modifying function 
in the least-squares analysis that evens out the irregular 
behaviour in the data by 'sharpening' the atomic 
electron density peaks. But even if the distribution of 
(w(AF) 2) against sin 0/Z were flat, we may be more 
interested in certain parameters that describe the 
model e.g. atomic positions, than in others, e.g. 
bonding electron density, and may decide to use a 
modified weighting function w '=w exp (r sin 2 0/2z). 
The increase in w' with increasing sin 0/2 can be offset 
by a corresponding reduction in (zIF) 2 for high-order 
reflexions so that the plot of (w'A 2) remains nearly flat. 
In summary we see that the 'weights' in least-squares 
analysis depend not only on the experimental data but 
also on the model and on our attitude to it. 

This work was carried out with the financial support 
of the Schweizerischer Nationalfonds zur F~frderung 
der wissenschaftlichen Forschung. We are also grateful 
to Dr Hans-Beat Biirgi and Professor Peter J. Huber for 
helpful comments and criticisms. 
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o-Carboxyphenyl methyl sulphoxide and o-carboxyphenyl methyl selenium oxide are monoclinic (P2Jc) 
with cell dimensions a =  8-979, b = 11"660, c= 9.554 A, t =  123.62 ° and a =  8.948, b = 11.445, c= 9.583 A, 
t =  122.03 ° respectively. Although the two compounds show very similar atomic positions the molecular 
structures are essentially different. The hydroxyl hydrogen atom of the carboxyl group of the sulphur 
compound corresponds to the hydrogen atom attached to the selenium oxide oxygen, and there are 
several structural indications that there is ring closure by a Se-O bond. However, this bond is 2.378 A 
which is 34 % longer than a normal Se-O covalent bond. Both molecules are mainly planar except for 
the methyl group, which projects from the benzene ring plane. The molecules are linked together by a 
hydrogen bond from the hydroxyl oxygen to the oxygen attached to sulphur and selenium respectively 
in the adjacent molecule. 

Introduction 

Organic sulphoxides of the type R R ' S O  can be re- 
solved into optical antipodes. In connection with work 
on (I) Professor A. Fredga of  Uppsala  University re- 
cently synthesized an analogous selenium oxide (report 
in preparation).  As some spectral data indicated that 
there might  be a difference in the structure of  these 
oxides, X-ray structure determinations of the two com- 
pounds were undertaken. 

0 OH 01"I 
II I 

''°H c c 

II II \~o o o 

(l) (H) (tn) 

Experimental 

Weissenberg photographs indicated that both com- 
pounds were monoclinic.  The space group was deter- 

mined as P2ffc f rom the systematic absences, hOl for 
l odd and 0k0 for k odd. The crystal data are as follows: 

CsH8OaS, o-Carboxyphenyl  methyl  sulphoxide 
Molecular  weight 184.21 
Unit  cell a = 8 . 9 7 9  (3), b =  11.660 (5), c=9 .554  (2) A, 
t =  123.62°(2) 
V= 832"9/k 3 
Z = 4  
De = 1"469 g cm -3 
Dm = 1"469 g cm -3 
/ t =  30"73 cm -1 for Cu K~ radiation. 

C8HsOaSe, o-Carboxyphenyl  methyl selenium oxide 
Molecular  weight 231.11 
Uni t  cell a =  8.948 (5), b = 11.445 (6), c=9 .583  (6) A 
t =  122.03°(5). 
V= 831"9 A 3 
Z = 4  
De=  1"845 g cm -a 
Dm = 1"840 g cm -3 
/t = 65"57 cm -~ for Cu K~ radiation. 

Intensity data for both compounds  were collected on 
a Picker FACS I automatic diffractometer using graph- 
ite monochromated  Cu K~ radiation. Reflexions up 


